8 research outputs found

    TOXOPLASMOSIS IN MEXICO: EPIDEMIOLOGICAL SITUATION IN HUMANS AND ANIMALS

    Full text link

    Early diagnosis of congenital toxoplasmosis in newborn infants using IgG subclasses against two Toxoplasma gondii recombinant proteins

    No full text
    The aim of this work was to evaluate the utility of ELISA-based testing of total IgG (IgGt) antibodies and its subclasses (IgG1, IgG2, IgG3 and IgG4) against soluble (STAg) and recombinant (rSAG1 and rMIC3) antigens of Toxoplasma gondii for diagnosing congenital toxoplasmosis. Sera from 217 newborns initially testing positive for specific IgM in filter paper dried blood spots were tested for specific IgM and IgG by ELFA-VIDAS®. Congenital toxoplasmosis was confirmed in 175 and ruled out in 42 infants. The validity of the ELISA tests was determined using the persistence of IgG antibodies (ELFA-VIDAS® kit) at the end of 12 months, which is considered the reference test for the diagnosis of congenital toxoplasmosis. The frequency of positivity with IgGt against STAg, rSAG1 and rMIC3 was found in 97.2%, 96.3% and 80.2%, respectively, of the newborns with confirmed congenital toxoplasmosis. IgG1 reacted with all three antigens, while IgG3 and IgG4 reacted preferentially with rMIC3. Higher mean values of reactivity (sample optical density/cut-off) were found for all subclasses when using rMIC3. All of the antigens showed high sensitivity and low specificity in detecting anti-T. gondii IgGt and IgG1 and low sensitivity and high specificity in detecting IgG3 and IgG4. In conclusion, the combined detection of IgG antibody subclasses against recombinant toxoplasmic antigens may be useful for the early diagnosis of congenital toxoplasmosis

    A systematic review and meta-analysis of <it>Toxoplasma gondii</it> infection among the Mexican population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toxoplasmosis is a disease caused by <it>Toxoplasma gondii</it> and at least one-third of the world’s population has detectable <it>T. gondii</it> antibodies. The seroprevalence of <it>T.gondii</it> ranges from 15% to 50% among the Mexican general population. The aim of this work was to determine the mean prevalence and weighted mean prevalence of <it>T. gondii</it> infection, and to evaluate the epidemiological transition of infection in Mexico.</p> <p>Methods</p> <p>Pub Med, Lilacs, Medline, Latindex, Google Scholar data bases were searched to retrieve reports from 1951 up to 2012 regarding prevalence data, diagnostic tests and risk factors of infection among the adult population. Data collection and criteria eligibility was established in order to determine the crude prevalence (proportion of positive cases) of each study, together with weighted population prevalence according to individual research group categories to limit the bias that may impose the heterogeneous nature of the reports. A Forest Plot chart and linear regression analysis were performed by plotting the prevalence of infection reported from each study over a period of sixty years.</p> <p>Results</p> <p>A total of 132 studies were collected from 41 publications that included 70,123 individuals. The average mean prevalence was 27.97%, and weighted mean prevalence was 19.27%. Comparisons among different risk groups showed that the weighted prevalence was higher in women with miscarriages (36.03%), immunocompromised patients (28.54%), mentally-ill patients (38.52%) and other risk groups (35.13%). <it>Toxoplasma</it> infection among the Mexican population showed a downward trend of 0.1%/year over a period of sixty years that represents a 5.8% reduction in prevalence.</p> <p>Conclusions</p> <p>This analysis showed a downward trend of infection; however, there are individuals at high risk for infection such as immunocompromised patients, mentally-ill patients and pregnant women. Further research is required to provide better prevention strategies, effective diagnostic testing and medical management of patients. Educational efforts are required to avoid the transmission of infection in populations that cannot be controlled by drugs alone.</p

    A comprehensive review of Toxoplasma gondii biology and host-cell interaction: Challenges for a plant-based vaccine

    No full text
    Toxoplasmosisis a worldwide-distributed infection caused by Toxoplasma gondii, which causes a wide range of clinical syndromesin humans, mammals and birds. T. gondiiis considered a parasite of veterinary and medical importance, because it maycause abortion or congenital disease in its intermediate hosts. Despite theeconomic losses associated with T. gondiiinfection in farm animals and the socio-economic impact caused by this zoonoticdisease in the human population, there is no effective treatment available forhumans or animals able to eliminate the parasite from the host once the chronicinfection has been established. The only commercial vaccine is the S48 strainof attenuated tachyzoites for use in sheep. However, this vaccine causes sideeffects, has a short life time and induces a short-term immunity. So far, noacellular vaccine against toxoplasmosis has been commercialized. In fact, futurechallenges include the development of an effective vaccine to preventtoxoplasmosis. Most parasitologists and vaccinologists agree that futureefforts should be concentrated on developing multi-antigen vaccines and moreefficient delivery systems able to express heterologous proteins abundantly aswell as on searching for immunization schedules and adequate adjuvants toenhance the protective responses. To achieve this, platforms for the productionof acellular vaccines based on the use of plants can have an important role.Fil: Sander, Valeria Analía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Ángel, Sergio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Clemente, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin
    corecore